<u>AHRI Update</u>

Positive Displacement and Centrifugal Refrigerant Compressors

Bridge Xue Vice President

we make life better™

Agenda

- 1. Introduction to AHRI
- 2. AHRI Standard 540-2019 (positive displacement)
- 3. AHRI Standard 1520P (centrifugal)
- 4. Uncertainty Limits in AHRI Compressor Standards

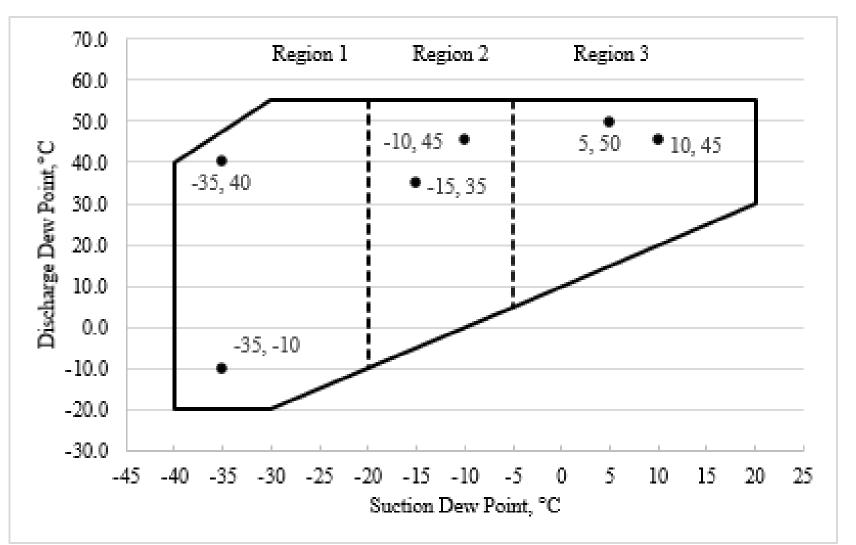
Introduction to AHRI

- 319 Member Companies: Over 95% of all HVACR products manufactured and installed in North America; more than 70% of global products
- 102 AHRI standards and guidelines in use across the globe
- 44 AHRI Certification Programs: Nearly 900 participants representing over 70% of all HVACR products manufactured globally

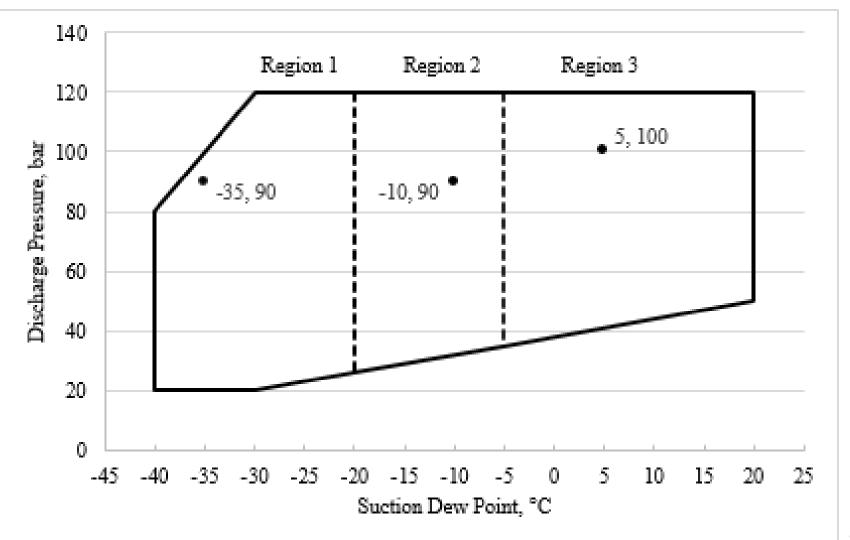
AHRI Standard 540-2019 Purpose and Development History

Purpose

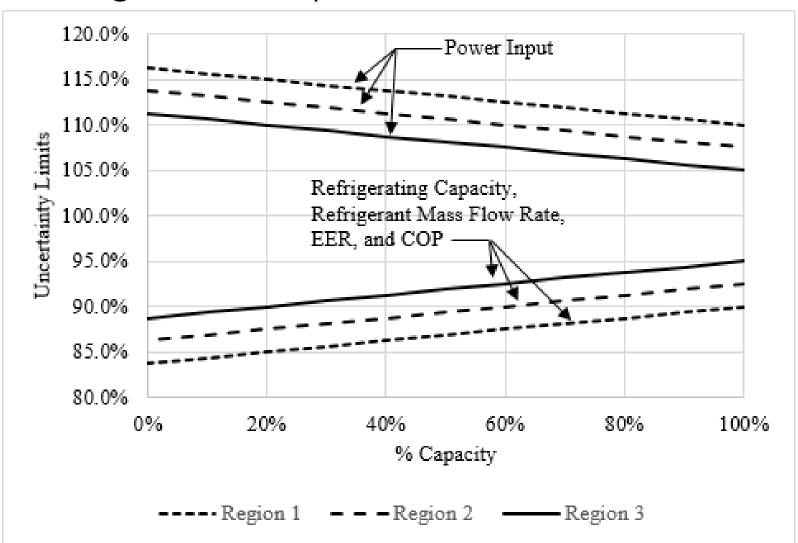
- Provide the industry the ability to accurately compare compressors
 - Consistent method of presenting data
- Ensure published data from a compressor manufacturer is within a defined uncertainty limit
- Development History
 - 2012 AHRI 570/571 is updated to harmonize standard rating conditions with Europe and China
 - 2015 AHRI 540 is updated to include operating map tolerances, superheat correction, and verification of published ratings for batches of equipment
 - 2017 AHRI 545 is created to define requirements for modulating compressors
 - 2019 AHRI 540 will be updated to include all types of positive displacement compressors


AHRI Standard 540-2019 Polynomial Equation – 3 requirements

- 1. Fixed Displacement
 - One full-load polynomial equation
- 2. Discrete Modulating
 - One polynomial equation for each discrete step
- 3. Continuous Modulating
 - Three polynomial equations (maximum, minimum, mid point)


AHRI Standard 540-2019 4 Rating Methods

- 1. No Economizer
- 2. Economizer with Manufacturer Specified Heat Exchanger
- 3. Economizer with Non-Specified Heat Exchanger
- 4. Economizer with Flash Tank


AHRI Standard 540-2019 Application Envelope – 3 Regions (subcritical)

AHRI Standard 540-2019 Application Envelope – 3 Regions (supercritical)

AHRI Standard 540-2019 Rating Uncertainty Limits

AHRI Standard 540-2019 Reference Rating Conditions (Harmonized with EN12900)

- 1. Air Conditioning and Heat Pump Conditions (Subcritical)
 - Heating
 - Cooling
- 2. Refrigeration Conditions (Subcritical and Transcritical)
 - High
 - Medium
 - Low

AHRI Standard 540-2019 Published Ratings

- 1. General
- 2. Operating Range
- 3. Performance Data (polynomial equation)
- 4. Additional Data for Modulating Compressors
- 5. Additional Data for Rating Methods 2, 3, and 4 or Interstage Heat Rejection

AHRI Standard 540-2019 Zeotropic Refrigerants

- Industry is having an increased focus on refrigerants with glide
 - Due to search for Low GWP solutions
- Impact of the glide is in the heat exchangers
 - Actual system runs at higher suction pressure and high discharge pressure in comparison to the dew point
 - Actual system capacity would be higher
 - Efficiency less impacted (about same)
- Why are compressors ratings based on Dew Point?
 - No glide inside of a compressor
 - Low pressure compressed to higher pressure
 - Mass flow measured
 - Power measured
 - Capacity is calculated!

AHRI Standard 540-2019 Zeotropic Refrigerants

- Predicting of glide calculation
 - Mid-point can be used as rough estimate
 - AHRI 540 Appendix C (informative)
 - Condensing pressure: Average of bubble point and dew point
 - Suction pressure: Average of TXV temperature and dew point
 - Subcooling will move this mid point
 - Actual saturated point could/should be obtained from heat exchanger manufacturer
- Compressors rated in accordance with a standard are still valid for zeotropic refrigerants due to rating of entire operating map
- Capacity should be calculated by system manufacturer based on heat exchange knowledge

AHRI Standard 540-2019 Superheat Correction

- Performance ratings established for specific superheat and/or return gas temperature
 - Appendix D of AHRI 540 (informative)
 - Superheat correction formulas
 - Based on suction densities
 - Correction factors should be provided by compressor manufacture for precise

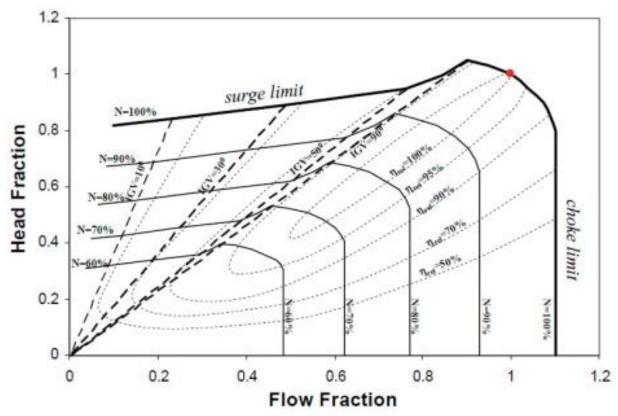
```
\dot{m}_{\text{corrected}} = \{ 1 + F_v [(v_{\text{rated}} / v_{\text{corrected}}) - 1] \} \cdot \dot{m}_{\text{rated}}
```

Where:

- Fv = Volumetric efficiency correction factor the correction factor will vary based on volumetric efficiency of the compression technology used, a value of one (1) can be used for an approximation. Contact the manufacturer for a more precise value.
- m corrected = Refrigerant Mass Flow Rate at suction condition, lbm/h, kg/s
- \dot{m}_{rated} = Refrigerant Mass Flow Rate at rated superheat, lbm/h, kg/s
- v_{corrected} = Specific volume at suction condition, ft³/lbm, m³/kg
- v_{rated} = Specific volume at rated condition, ft³/lbm, m³/kg

D1

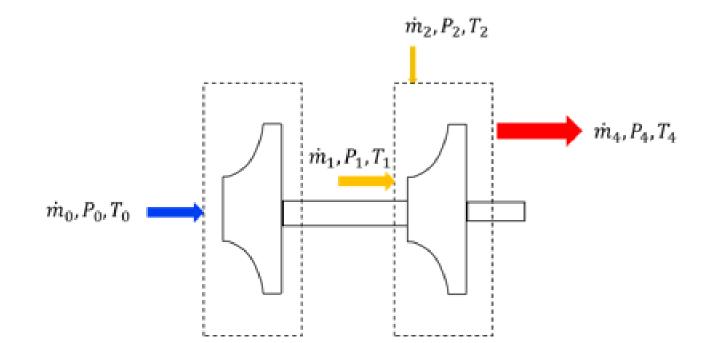
AHRI Standard 540-2019 Published Ratings for a Population of Compressors

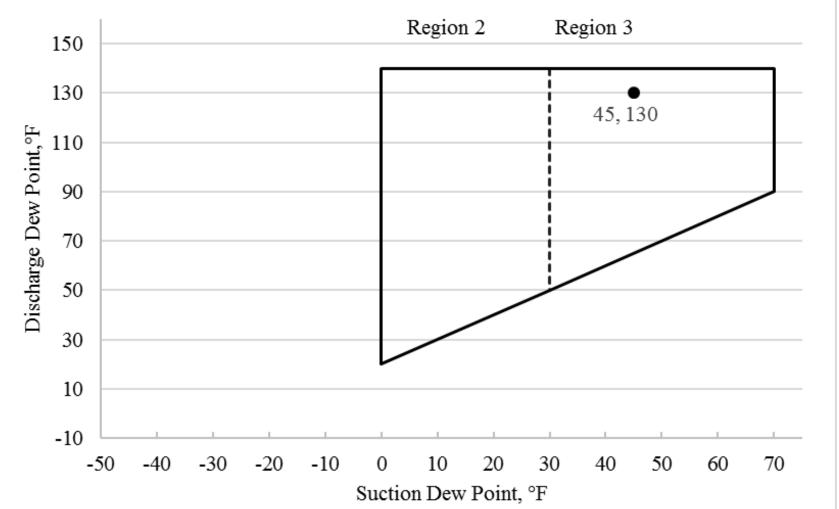

Table E1.	Rating Uncertainty Limits Using a Sample Size of 3				
Published Rating		Region 1	Region 2	Region 3	
Refrigerant Mass Flow, 1b/min Refrigerating Capacity, Btu/h EER, Btu/W·h COP, W/W	Full Load	Tested Rating \geq	Tested Rating ≥	Tested Rating \geq	
		94.5% of	95.5% of	97.0% of	
		Published Rating	Published Rating	Published Rating	
	Part Load	Tested Rating ≥	Tested Rating ≥	Tested Rating \geq	
		(104.5% - UL _{R1}) of	(103% - UL _{R2}) of	(102% - UL _{R3}) of	
		Published Rating	Published Rating	Published Rating	
Power Input, kW	Full Load	Tested Rating ≤	Tested Rating ≤	Tested Rating \leq	
		105.5% of	104.5% of	103.0% of	
		Published Rating	Published Rating	Published Rating	
	Part Load	Tested Rating \leq	Tested Rating \leq	Tested Rating \leq	
		$(100\% + UL_{Rl})$	(100% + UL _{R2})	(100% + UL _{R3})	
		of Published Rating	of Published Rating	of Published Rating	

AHRI Standard 1520P Purpose

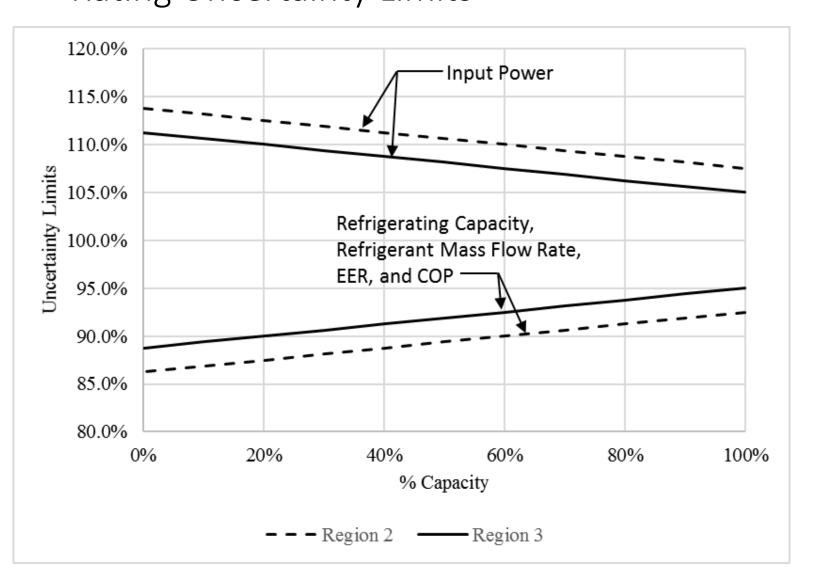
- Standardize centrifugal compressor performance ratings
- Allow comparison of centrifugal and positive displacement compressor ratings

AHRI Standard 1520P Reference Documents


- ASME, Performance Test Code on Compressors and Exhausters, PTC 10-1997.
- Brasz, J.J., A Proposed Centrifugal Refrigeration Compressor Rating Method, International Compressor Engineering Conference, 2010.


AHRI Standard 1520P Performance Ratings

- Flow Factor:
- Head Factor:
- Isentropic Efficiency:


$$FF = \frac{\dot{m_0}}{\rho_0 a_0}$$
$$HF = \frac{\Delta h_s}{a_0^2}$$
$$\eta_{is} = \frac{\Delta h_s}{\Delta h_a}$$

AHRI Standard 1520P Application Envelope – 2 Regions (subcritical)

AHRI Standard 1520P Rating Uncertainty Limits

AHRI Standard 1520P Method of Test

ASHRAE 225P

- 1. Based on ASHRAE 23.1, Methods of Testing for Rating the Performance of Positive Displacement Refrigerant Compressors and Condensing Units that Operate at Subcritical Temperatures of the Refrigerant
- 2. Includes calculation for flow factor, head factor, and thermodynamic efficiency

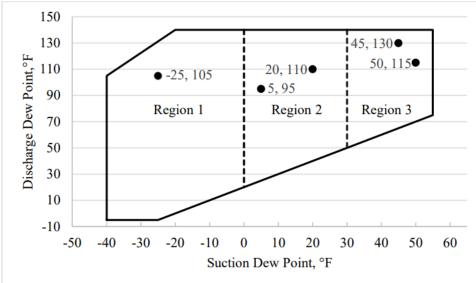
Uncertainty Limits in AHRI Compressor Standards

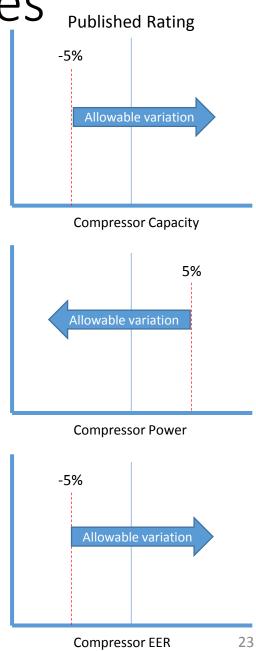
Basis

TOLERANCES AND UNCERTAINTIES IN PERFORMANCE DATA OF REFRIGERANT COMPRESSORS

JANUARY 2017

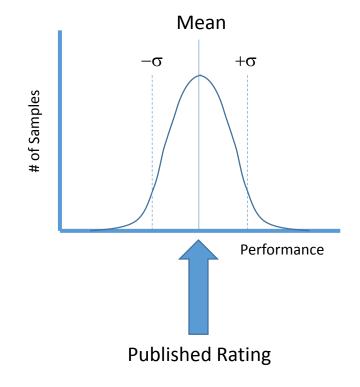
we make life better™




Compressor Rating Tolerances

- Published ratings refer to mean performance
 - AHRI 540
 - EN 12900
- Standards specify allowable tolerances on

the rating data

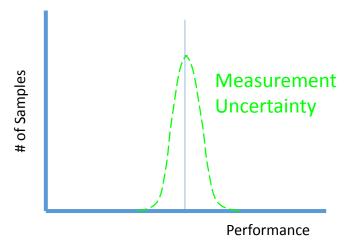

- 5% High Temp
- 7.5% Medium Temp
- 10% Low Temp

Compressor Performance Uncertainty

- Inherent in compressor performance is variation or uncertainty.
- Distribution of performance data is expressed by a mean and standard deviation (σ) and assumed to be a normal distribution.
- Compressor ratings published per the AHRI standards (540, 545, 570) require that the rating data represents the mean performance level of that compressor.

AHRI/ASERCOM White Paper

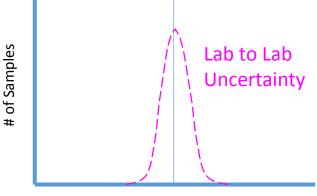
- Study co-sponsored by AHRI and ASERCOM looked into the sources of uncertainty in compressor performance.
- Identified 5 Sources of uncertainty:
 - Measurement System Uncertainty 7
 - Lab-to-Lab Variation
 - Manufacturing Variation
 - Performance Prediction Error
 - Tested vs. Rated Condition
- Total compressor uncertainty is determined based on the accumulating effects of sources of uncertainty.


Measurement System Uncertainty

- Type of Measurement Uncertainty
 - Type A Statistical variation. Repeatability of a single measurement.
 - Type B Bias built into the measurement system (addressed in the next slide).
- Uncertainty allowed by

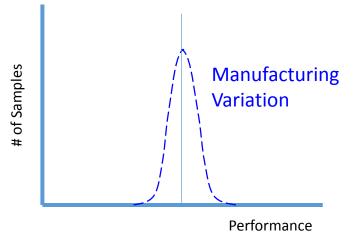
ASHRAE 23 and EN 13771

- Temperature ±0.3 K resp ±0.5 °F
- Temperature differences ±1% of the difference
- Pressure ±1% of value
- Electrical power ±1% of value
- Standard allowable uncertainties equate to
 - ±1.5% on capacity at high temperatures
 - ± 2.1% on capacity at low temperatures
 - ± 1.3% on power
 - ± 2% on COP at high temperatures
 - ± 3% on COP at low temperatures



Lab-to-Lab Uncertainty

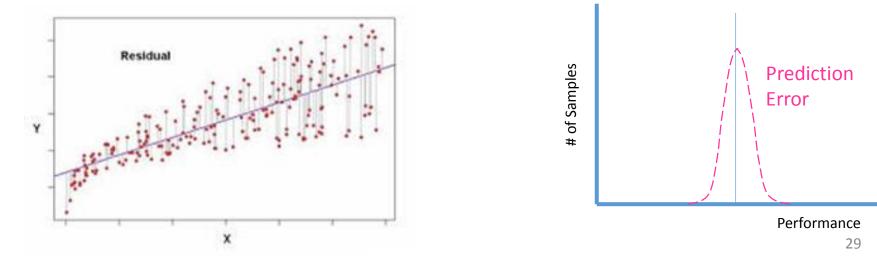
- Lab-to-Lab refers to the reproducibility of a measurement from one facility to another.
- The uncertainties (Type B) among laboratories are based on:
 - Calibration of measurement devices
 - Measurement methods, such as volume flow measurement or mass flow measurement on suction or discharge site
 - Quality of electrical power grid
 - Refrigerant properties or refrigerant properties database
- ASERCOM Study of seven European labs showed
 - R404A operation at low temperatures
 - Cooling capacity +/- 2.1%
 - Power consumption +/- 1.2%
 - COP/EER +/- 2.3%
 - R404A operation at medium temperatures
 - Cooling capacity +/- 1.5%
 - Power consumption +/- 1.5%
 - COP/EER +/- 1.8%



#

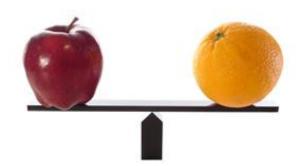
Manufacturing Variation

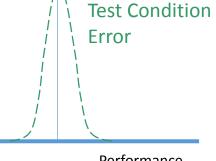
- Variation occurs in, but not limited to, these factors:
 - Dimensional variability in mechanical components
 - Internal gas leaks
 - Rotor & gate leakage in rotary compressors
 - Wrap leakage in scroll compressors
 - Rotor to rotor and rotor to bore leakage in screw compressors
 - Discharge and suction valve leakage
 - Varying effect of clearance volume in reciprocating compressors across the operating range
 - Bearing alignments
 - Electric motor efficiency
 - Mechanical losses in friction surfaces
- Typical product variability in cooling capacity is around ±1.5%.



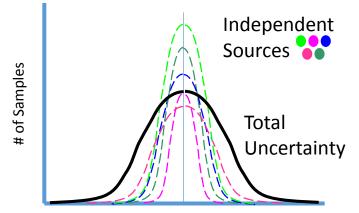
Performance Prediction Error

• AHRI performance standards require that compressor ratings use a 10-coefficent polynomial equation:


 $X = C1 + C2(T_s) + C3(T_d) + C4(T_s^2) + C5(T_s T_d) + C6(T_d^2) + C7(T_s^3) + C8(T_s^2 T_d) + C9(T_s T_d^2) + C10(T_d^3)$


- C1 through C10 = Regression coefficients
- T_d & T_s = Discharge & Suction dew point temperature, °F, °C
- X = Performance metric (capacity, power, EER or mass flow rate)
- Aute and Martin evaluated the regression uncertainty for this equation and showed average uncertainty as high as 4% and 5% for mass flow rate and power, respectively.

Tested vs. Rated Condition Error


- Compressor testing standards allow for deviations in the input from basic/specified test conditions.
- Difference between actual test conditions and specified test conditions can create errors in mass flow/capacity and power of order 1.5% and 2% respectively.
- The actual test condition may be further away from the specified test condition if the system is not stable or in transient condition while the test parameters are being recorded.

Total Uncertainty

- Need to combine these independent sources of uncertainty
- Total uncertainty is calculated by summing squared deviations from the mean.
- Combining the independent uncertainties provides a total uncertainty in the published rating
 - ±5.0% on Capacity
 - ±4.9% on Power

High Temp Suction Conditions

Performance

Сара	acity	Power				
Uncertainty	Variability	Uncertainty	Variability			
±1.5%	(1.5%) ²	±1.3%	(1.3%) ²			
±1.5%	(1.5%) ²	±1.5%	(1.5%) ²			
±1.5%	(1.5%) ²	*	*			
±4.0%	(4.0%) ²	±4.0%	(4.0%) ²			
±1.5%	(1.5%) ²	±2.0%	(2.0%) ²			
	0.0025		0.0024			
±5.0%	Ļ	±4.9%	Ļ			
	Uncertainty ±1.5% ±1.5% ±1.5% ±4.0% ±1.5%	$\pm 1.5\%$ $(1.5\%)^2$ $\pm 1.5\%$ $(1.5\%)^2$ $\pm 1.5\%$ $(1.5\%)^2$ $\pm 4.0\%$ $(4.0\%)^2$ $\pm 1.5\%$ $(1.5\%)^2$ ± 0.0025	UncertaintyVariabilityUncertainty $\pm 1.5\%$ $(1.5\%)^2$ $\pm 1.3\%$ $\pm 1.5\%$ $(1.5\%)^2$ $\pm 1.5\%$ $\pm 1.5\%$ $(1.5\%)^2$ $*$ $\pm 4.0\%$ $(4.0\%)^2$ $\pm 4.0\%$ $\pm 1.5\%$ $(1.5\%)^2$ $\pm 2.0\%$ $\pm 1.5\%$ (0.0025) $\pm 2.0\%$			

*Only capacity variation was studied. Power variation is also expected, but not shown here. 31

Questions?